1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
|
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "dns_tls_test"
#include <gtest/gtest.h>
#include "dns/DnsTlsDispatcher.h"
#include "dns/DnsTlsQueryMap.h"
#include "dns/DnsTlsServer.h"
#include "dns/DnsTlsSessionCache.h"
#include "dns/DnsTlsSocket.h"
#include "dns/DnsTlsTransport.h"
#include "dns/IDnsTlsSocket.h"
#include "dns/IDnsTlsSocketFactory.h"
#include "dns/IDnsTlsSocketObserver.h"
#include "dns_responder/dns_tls_frontend.h"
#include <chrono>
#include <arpa/inet.h>
#include <android-base/macros.h>
#include <netdutils/Slice.h>
#include "log/log.h"
namespace android {
namespace net {
using netdutils::Slice;
using netdutils::makeSlice;
typedef std::vector<uint8_t> bytevec;
static void parseServer(const char* server, in_port_t port, sockaddr_storage* parsed) {
sockaddr_in* sin = reinterpret_cast<sockaddr_in*>(parsed);
if (inet_pton(AF_INET, server, &(sin->sin_addr)) == 1) {
// IPv4 parse succeeded, so it's IPv4
sin->sin_family = AF_INET;
sin->sin_port = htons(port);
return;
}
sockaddr_in6* sin6 = reinterpret_cast<sockaddr_in6*>(parsed);
if (inet_pton(AF_INET6, server, &(sin6->sin6_addr)) == 1){
// IPv6 parse succeeded, so it's IPv6.
sin6->sin6_family = AF_INET6;
sin6->sin6_port = htons(port);
return;
}
ALOGE("Failed to parse server address: %s", server);
}
bytevec FINGERPRINT1 = { 1 };
bytevec FINGERPRINT2 = { 2 };
std::string SERVERNAME1 = "dns.example.com";
std::string SERVERNAME2 = "dns.example.org";
// BaseTest just provides constants that are useful for the tests.
class BaseTest : public ::testing::Test {
protected:
BaseTest() {
parseServer("192.0.2.1", 853, &V4ADDR1);
parseServer("192.0.2.2", 853, &V4ADDR2);
parseServer("2001:db8::1", 853, &V6ADDR1);
parseServer("2001:db8::2", 853, &V6ADDR2);
SERVER1 = DnsTlsServer(V4ADDR1);
SERVER1.fingerprints.insert(FINGERPRINT1);
SERVER1.name = SERVERNAME1;
}
sockaddr_storage V4ADDR1;
sockaddr_storage V4ADDR2;
sockaddr_storage V6ADDR1;
sockaddr_storage V6ADDR2;
DnsTlsServer SERVER1;
};
bytevec make_query(uint16_t id, size_t size) {
bytevec vec(size);
vec[0] = id >> 8;
vec[1] = id;
// Arbitrarily fill the query body with unique data.
for (size_t i = 2; i < size; ++i) {
vec[i] = id + i;
}
return vec;
}
// Query constants
const unsigned MARK = 123;
const uint16_t ID = 52;
const uint16_t SIZE = 22;
const bytevec QUERY = make_query(ID, SIZE);
template <class T>
class FakeSocketFactory : public IDnsTlsSocketFactory {
public:
FakeSocketFactory() {}
std::unique_ptr<IDnsTlsSocket> createDnsTlsSocket(
const DnsTlsServer& server ATTRIBUTE_UNUSED,
unsigned mark ATTRIBUTE_UNUSED,
IDnsTlsSocketObserver* observer,
DnsTlsSessionCache* cache ATTRIBUTE_UNUSED) override {
return std::make_unique<T>(observer);
}
};
bytevec make_echo(uint16_t id, const Slice query) {
bytevec response(query.size() + 2);
response[0] = id >> 8;
response[1] = id;
// Echo the query as the fake response.
memcpy(response.data() + 2, query.base(), query.size());
return response;
}
// Simplest possible fake server. This just echoes the query as the response.
class FakeSocketEcho : public IDnsTlsSocket {
public:
FakeSocketEcho(IDnsTlsSocketObserver* observer) : mObserver(observer) {}
bool query(uint16_t id, const Slice query) override {
// Return the response immediately (asynchronously).
std::thread(&IDnsTlsSocketObserver::onResponse, mObserver, make_echo(id, query)).detach();
return true;
}
private:
IDnsTlsSocketObserver* const mObserver;
};
class TransportTest : public BaseTest {};
TEST_F(TransportTest, Query) {
FakeSocketFactory<FakeSocketEcho> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
auto r = transport.query(makeSlice(QUERY)).get();
EXPECT_EQ(DnsTlsTransport::Response::success, r.code);
EXPECT_EQ(QUERY, r.response);
}
TEST_F(TransportTest, SerialQueries_100000) {
FakeSocketFactory<FakeSocketEcho> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
// Send more than 65536 queries serially.
for (int i = 0; i < 100000; ++i) {
auto r = transport.query(makeSlice(QUERY)).get();
EXPECT_EQ(DnsTlsTransport::Response::success, r.code);
EXPECT_EQ(QUERY, r.response);
}
}
// These queries might be handled in serial or parallel as they race the
// responses.
TEST_F(TransportTest, RacingQueries_10000) {
FakeSocketFactory<FakeSocketEcho> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
std::vector<std::future<DnsTlsTransport::Result>> results;
// Fewer than 65536 queries to avoid ID exhaustion.
for (int i = 0; i < 10000; ++i) {
results.push_back(transport.query(makeSlice(QUERY)));
}
for (auto& result : results) {
auto r = result.get();
EXPECT_EQ(DnsTlsTransport::Response::success, r.code);
EXPECT_EQ(QUERY, r.response);
}
}
// A server that waits until sDelay queries are queued before responding.
class FakeSocketDelay : public IDnsTlsSocket {
public:
FakeSocketDelay(IDnsTlsSocketObserver* observer) : mObserver(observer) {}
~FakeSocketDelay() { std::lock_guard<std::mutex> guard(mLock); }
static size_t sDelay;
static bool sReverse;
bool query(uint16_t id, const Slice query) override {
ALOGD("FakeSocketDelay got query with ID %d", int(id));
std::lock_guard<std::mutex> guard(mLock);
// Check for duplicate IDs.
EXPECT_EQ(0U, mIds.count(id));
mIds.insert(id);
// Store response.
mResponses.push_back(make_echo(id, query));
ALOGD("Up to %zu out of %zu queries", mResponses.size(), sDelay);
if (mResponses.size() == sDelay) {
std::thread(&FakeSocketDelay::sendResponses, this).detach();
}
return true;
}
private:
void sendResponses() {
std::lock_guard<std::mutex> guard(mLock);
if (sReverse) {
std::reverse(std::begin(mResponses), std::end(mResponses));
}
for (auto& response : mResponses) {
mObserver->onResponse(response);
}
mIds.clear();
mResponses.clear();
}
std::mutex mLock;
IDnsTlsSocketObserver* const mObserver;
std::set<uint16_t> mIds GUARDED_BY(mLock);
std::vector<bytevec> mResponses GUARDED_BY(mLock);
};
size_t FakeSocketDelay::sDelay;
bool FakeSocketDelay::sReverse;
TEST_F(TransportTest, ParallelColliding) {
FakeSocketDelay::sDelay = 10;
FakeSocketDelay::sReverse = false;
FakeSocketFactory<FakeSocketDelay> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
std::vector<std::future<DnsTlsTransport::Result>> results;
// Fewer than 65536 queries to avoid ID exhaustion.
for (size_t i = 0; i < FakeSocketDelay::sDelay; ++i) {
results.push_back(transport.query(makeSlice(QUERY)));
}
for (auto& result : results) {
auto r = result.get();
EXPECT_EQ(DnsTlsTransport::Response::success, r.code);
EXPECT_EQ(QUERY, r.response);
}
}
TEST_F(TransportTest, ParallelColliding_Max) {
FakeSocketDelay::sDelay = 65536;
FakeSocketDelay::sReverse = false;
FakeSocketFactory<FakeSocketDelay> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
std::vector<std::future<DnsTlsTransport::Result>> results;
// Exactly 65536 queries should still be possible in parallel,
// even if they all have the same original ID.
for (size_t i = 0; i < FakeSocketDelay::sDelay; ++i) {
results.push_back(transport.query(makeSlice(QUERY)));
}
for (auto& result : results) {
auto r = result.get();
EXPECT_EQ(DnsTlsTransport::Response::success, r.code);
EXPECT_EQ(QUERY, r.response);
}
}
TEST_F(TransportTest, ParallelUnique) {
FakeSocketDelay::sDelay = 10;
FakeSocketDelay::sReverse = false;
FakeSocketFactory<FakeSocketDelay> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
std::vector<bytevec> queries(FakeSocketDelay::sDelay);
std::vector<std::future<DnsTlsTransport::Result>> results;
for (size_t i = 0; i < FakeSocketDelay::sDelay; ++i) {
queries[i] = make_query(i, SIZE);
results.push_back(transport.query(makeSlice(queries[i])));
}
for (size_t i = 0 ; i < FakeSocketDelay::sDelay; ++i) {
auto r = results[i].get();
EXPECT_EQ(DnsTlsTransport::Response::success, r.code);
EXPECT_EQ(queries[i], r.response);
}
}
TEST_F(TransportTest, ParallelUnique_Max) {
FakeSocketDelay::sDelay = 65536;
FakeSocketDelay::sReverse = false;
FakeSocketFactory<FakeSocketDelay> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
std::vector<bytevec> queries(FakeSocketDelay::sDelay);
std::vector<std::future<DnsTlsTransport::Result>> results;
// Exactly 65536 queries should still be possible in parallel,
// and they should all be mapped correctly back to the original ID.
for (size_t i = 0; i < FakeSocketDelay::sDelay; ++i) {
queries[i] = make_query(i, SIZE);
results.push_back(transport.query(makeSlice(queries[i])));
}
for (size_t i = 0 ; i < FakeSocketDelay::sDelay; ++i) {
auto r = results[i].get();
EXPECT_EQ(DnsTlsTransport::Response::success, r.code);
EXPECT_EQ(queries[i], r.response);
}
}
TEST_F(TransportTest, IdExhaustion) {
// A delay of 65537 is unreachable, because the maximum number
// of outstanding queries is 65536.
FakeSocketDelay::sDelay = 65537;
FakeSocketDelay::sReverse = false;
FakeSocketFactory<FakeSocketDelay> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
std::vector<std::future<DnsTlsTransport::Result>> results;
// Issue the maximum number of queries.
for (int i = 0; i < 65536; ++i) {
results.push_back(transport.query(makeSlice(QUERY)));
}
// The ID space is now full, so subsequent queries should fail immediately.
auto r = transport.query(makeSlice(QUERY)).get();
EXPECT_EQ(DnsTlsTransport::Response::internal_error, r.code);
EXPECT_TRUE(r.response.empty());
for (auto& result : results) {
// All other queries should remain outstanding.
EXPECT_EQ(std::future_status::timeout,
result.wait_for(std::chrono::duration<int>::zero()));
}
}
// Responses can come back from the server in any order. This should have no
// effect on Transport's observed behavior.
TEST_F(TransportTest, ReverseOrder) {
FakeSocketDelay::sDelay = 10;
FakeSocketDelay::sReverse = true;
FakeSocketFactory<FakeSocketDelay> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
std::vector<bytevec> queries(FakeSocketDelay::sDelay);
std::vector<std::future<DnsTlsTransport::Result>> results;
for (size_t i = 0; i < FakeSocketDelay::sDelay; ++i) {
queries[i] = make_query(i, SIZE);
results.push_back(transport.query(makeSlice(queries[i])));
}
for (size_t i = 0 ; i < FakeSocketDelay::sDelay; ++i) {
auto r = results[i].get();
EXPECT_EQ(DnsTlsTransport::Response::success, r.code);
EXPECT_EQ(queries[i], r.response);
}
}
TEST_F(TransportTest, ReverseOrder_Max) {
FakeSocketDelay::sDelay = 65536;
FakeSocketDelay::sReverse = true;
FakeSocketFactory<FakeSocketDelay> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
std::vector<bytevec> queries(FakeSocketDelay::sDelay);
std::vector<std::future<DnsTlsTransport::Result>> results;
for (size_t i = 0; i < FakeSocketDelay::sDelay; ++i) {
queries[i] = make_query(i, SIZE);
results.push_back(transport.query(makeSlice(queries[i])));
}
for (size_t i = 0 ; i < FakeSocketDelay::sDelay; ++i) {
auto r = results[i].get();
EXPECT_EQ(DnsTlsTransport::Response::success, r.code);
EXPECT_EQ(queries[i], r.response);
}
}
// Returning null from the factory indicates a connection failure.
class NullSocketFactory : public IDnsTlsSocketFactory {
public:
NullSocketFactory() {}
std::unique_ptr<IDnsTlsSocket> createDnsTlsSocket(
const DnsTlsServer& server ATTRIBUTE_UNUSED,
unsigned mark ATTRIBUTE_UNUSED,
IDnsTlsSocketObserver* observer ATTRIBUTE_UNUSED,
DnsTlsSessionCache* cache ATTRIBUTE_UNUSED) override {
return nullptr;
}
};
TEST_F(TransportTest, ConnectFail) {
NullSocketFactory factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
auto r = transport.query(makeSlice(QUERY)).get();
EXPECT_EQ(DnsTlsTransport::Response::network_error, r.code);
EXPECT_TRUE(r.response.empty());
}
// Simulate a socket that connects but then immediately receives a server
// close notification.
class FakeSocketClose : public IDnsTlsSocket {
public:
FakeSocketClose(IDnsTlsSocketObserver* observer) :
mCloser(&IDnsTlsSocketObserver::onClosed, observer) {}
~FakeSocketClose() { mCloser.join(); }
bool query(uint16_t id ATTRIBUTE_UNUSED,
const Slice query ATTRIBUTE_UNUSED) override {
return true;
}
private:
std::thread mCloser;
};
TEST_F(TransportTest, CloseRetryFail) {
FakeSocketFactory<FakeSocketClose> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
auto r = transport.query(makeSlice(QUERY)).get();
EXPECT_EQ(DnsTlsTransport::Response::network_error, r.code);
EXPECT_TRUE(r.response.empty());
}
// Simulate a server that occasionally closes the connection and silently
// drops some queries.
class FakeSocketLimited : public IDnsTlsSocket {
public:
static int sLimit; // Number of queries to answer per socket.
static size_t sMaxSize; // Silently discard queries greater than this size.
FakeSocketLimited(IDnsTlsSocketObserver* observer) :
mObserver(observer), mQueries(0) {}
~FakeSocketLimited() {
{
ALOGD("~FakeSocketLimited acquiring mLock");
std::lock_guard<std::mutex> guard(mLock);
ALOGD("~FakeSocketLimited acquired mLock");
for (auto& thread : mThreads) {
ALOGD("~FakeSocketLimited joining response thread");
thread.join();
ALOGD("~FakeSocketLimited joined response thread");
}
mThreads.clear();
}
if (mCloser) {
ALOGD("~FakeSocketLimited joining closer thread");
mCloser->join();
ALOGD("~FakeSocketLimited joined closer thread");
}
}
bool query(uint16_t id, const Slice query) override {
ALOGD("FakeSocketLimited::query acquiring mLock");
std::lock_guard<std::mutex> guard(mLock);
ALOGD("FakeSocketLimited::query acquired mLock");
++mQueries;
if (mQueries <= sLimit) {
ALOGD("size %zu vs. limit of %zu", query.size(), sMaxSize);
if (query.size() <= sMaxSize) {
// Return the response immediately (asynchronously).
mThreads.emplace_back(&IDnsTlsSocketObserver::onResponse, mObserver, make_echo(id, query));
}
}
if (mQueries == sLimit) {
mCloser = std::make_unique<std::thread>(&FakeSocketLimited::sendClose, this);
}
return mQueries <= sLimit;
}
private:
void sendClose() {
{
ALOGD("FakeSocketLimited::sendClose acquiring mLock");
std::lock_guard<std::mutex> guard(mLock);
ALOGD("FakeSocketLimited::sendClose acquired mLock");
for (auto& thread : mThreads) {
ALOGD("FakeSocketLimited::sendClose joining response thread");
thread.join();
ALOGD("FakeSocketLimited::sendClose joined response thread");
}
mThreads.clear();
}
mObserver->onClosed();
}
std::mutex mLock;
IDnsTlsSocketObserver* const mObserver;
int mQueries GUARDED_BY(mLock);
std::vector<std::thread> mThreads GUARDED_BY(mLock);
std::unique_ptr<std::thread> mCloser GUARDED_BY(mLock);
};
int FakeSocketLimited::sLimit;
size_t FakeSocketLimited::sMaxSize;
TEST_F(TransportTest, SilentDrop) {
FakeSocketLimited::sLimit = 10; // Close the socket after 10 queries.
FakeSocketLimited::sMaxSize = 0; // Silently drop all queries
FakeSocketFactory<FakeSocketLimited> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
// Queue up 10 queries. They will all be ignored, and after the 10th,
// the socket will close. Transport will retry them all, until they
// all hit the retry limit and expire.
std::vector<std::future<DnsTlsTransport::Result>> results;
for (int i = 0; i < FakeSocketLimited::sLimit; ++i) {
results.push_back(transport.query(makeSlice(QUERY)));
}
for (auto& result : results) {
auto r = result.get();
EXPECT_EQ(DnsTlsTransport::Response::network_error, r.code);
EXPECT_TRUE(r.response.empty());
}
}
TEST_F(TransportTest, PartialDrop) {
FakeSocketLimited::sLimit = 10; // Close the socket after 10 queries.
FakeSocketLimited::sMaxSize = SIZE - 2; // Silently drop "long" queries
FakeSocketFactory<FakeSocketLimited> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
// Queue up 100 queries, alternating "short" which will be served and "long"
// which will be dropped.
int num_queries = 10 * FakeSocketLimited::sLimit;
std::vector<bytevec> queries(num_queries);
std::vector<std::future<DnsTlsTransport::Result>> results;
for (int i = 0; i < num_queries; ++i) {
queries[i] = make_query(i, SIZE + (i % 2));
results.push_back(transport.query(makeSlice(queries[i])));
}
// Just check the short queries, which are at the even indices.
for (int i = 0; i < num_queries; i += 2) {
auto r = results[i].get();
EXPECT_EQ(DnsTlsTransport::Response::success, r.code);
EXPECT_EQ(queries[i], r.response);
}
}
// Simulate a malfunctioning server that injects extra miscellaneous
// responses to queries that were not asked. This will cause wrong answers but
// must not crash the Transport.
class FakeSocketGarbage : public IDnsTlsSocket {
public:
FakeSocketGarbage(IDnsTlsSocketObserver* observer) : mObserver(observer) {
// Inject a garbage event.
mThreads.emplace_back(&IDnsTlsSocketObserver::onResponse, mObserver, make_query(ID + 1, SIZE));
}
~FakeSocketGarbage() {
std::lock_guard<std::mutex> guard(mLock);
for (auto& thread : mThreads) {
thread.join();
}
}
bool query(uint16_t id, const Slice query) override {
std::lock_guard<std::mutex> guard(mLock);
// Return the response twice.
auto echo = make_echo(id, query);
mThreads.emplace_back(&IDnsTlsSocketObserver::onResponse, mObserver, echo);
mThreads.emplace_back(&IDnsTlsSocketObserver::onResponse, mObserver, echo);
// Also return some other garbage
mThreads.emplace_back(&IDnsTlsSocketObserver::onResponse, mObserver, make_query(id + 1, query.size() + 2));
return true;
}
private:
std::mutex mLock;
std::vector<std::thread> mThreads GUARDED_BY(mLock);
IDnsTlsSocketObserver* const mObserver;
};
TEST_F(TransportTest, IgnoringGarbage) {
FakeSocketFactory<FakeSocketGarbage> factory;
DnsTlsTransport transport(SERVER1, MARK, &factory);
for (int i = 0; i < 10; ++i) {
auto r = transport.query(makeSlice(QUERY)).get();
EXPECT_EQ(DnsTlsTransport::Response::success, r.code);
// Don't check the response because this server is malfunctioning.
}
}
// Dispatcher tests
class DispatcherTest : public BaseTest {};
TEST_F(DispatcherTest, Query) {
bytevec ans(4096);
int resplen = 0;
auto factory = std::make_unique<FakeSocketFactory<FakeSocketEcho>>();
DnsTlsDispatcher dispatcher(std::move(factory));
auto r = dispatcher.query(SERVER1, MARK, makeSlice(QUERY),
makeSlice(ans), &resplen);
EXPECT_EQ(DnsTlsTransport::Response::success, r);
EXPECT_EQ(int(QUERY.size()), resplen);
ans.resize(resplen);
EXPECT_EQ(QUERY, ans);
}
TEST_F(DispatcherTest, AnswerTooLarge) {
bytevec ans(SIZE - 1); // Too small to hold the answer
int resplen = 0;
auto factory = std::make_unique<FakeSocketFactory<FakeSocketEcho>>();
DnsTlsDispatcher dispatcher(std::move(factory));
auto r = dispatcher.query(SERVER1, MARK, makeSlice(QUERY),
makeSlice(ans), &resplen);
EXPECT_EQ(DnsTlsTransport::Response::limit_error, r);
}
template<class T>
class TrackingFakeSocketFactory : public IDnsTlsSocketFactory {
public:
TrackingFakeSocketFactory() {}
std::unique_ptr<IDnsTlsSocket> createDnsTlsSocket(
const DnsTlsServer& server,
unsigned mark,
IDnsTlsSocketObserver* observer,
DnsTlsSessionCache* cache ATTRIBUTE_UNUSED) override {
std::lock_guard<std::mutex> guard(mLock);
keys.emplace(mark, server);
return std::make_unique<T>(observer);
}
std::multiset<std::pair<unsigned, DnsTlsServer>> keys;
private:
std::mutex mLock;
};
TEST_F(DispatcherTest, Dispatching) {
FakeSocketDelay::sDelay = 5;
FakeSocketDelay::sReverse = true;
auto factory = std::make_unique<TrackingFakeSocketFactory<FakeSocketDelay>>();
auto* weak_factory = factory.get(); // Valid as long as dispatcher is in scope.
DnsTlsDispatcher dispatcher(std::move(factory));
// Populate a vector of two servers and two socket marks, four combinations
// in total.
std::vector<std::pair<unsigned, DnsTlsServer>> keys;
keys.emplace_back(MARK, SERVER1);
keys.emplace_back(MARK + 1, SERVER1);
keys.emplace_back(MARK, V4ADDR2);
keys.emplace_back(MARK + 1, V4ADDR2);
// Do several queries on each server. They should all succeed.
std::vector<std::thread> threads;
for (size_t i = 0; i < FakeSocketDelay::sDelay * keys.size(); ++i) {
auto key = keys[i % keys.size()];
threads.emplace_back([key, i] (DnsTlsDispatcher* dispatcher) {
auto q = make_query(i, SIZE);
bytevec ans(4096);
int resplen = 0;
unsigned mark = key.first;
const DnsTlsServer& server = key.second;
auto r = dispatcher->query(server, mark, makeSlice(q),
makeSlice(ans), &resplen);
EXPECT_EQ(DnsTlsTransport::Response::success, r);
EXPECT_EQ(int(q.size()), resplen);
ans.resize(resplen);
EXPECT_EQ(q, ans);
}, &dispatcher);
}
for (auto& thread : threads) {
thread.join();
}
// We expect that the factory created one socket for each key.
EXPECT_EQ(keys.size(), weak_factory->keys.size());
for (auto& key : keys) {
EXPECT_EQ(1U, weak_factory->keys.count(key));
}
}
// Check DnsTlsServer's comparison logic.
AddressComparator ADDRESS_COMPARATOR;
bool isAddressEqual(const DnsTlsServer& s1, const DnsTlsServer& s2) {
bool cmp1 = ADDRESS_COMPARATOR(s1, s2);
bool cmp2 = ADDRESS_COMPARATOR(s2, s1);
EXPECT_FALSE(cmp1 && cmp2);
return !cmp1 && !cmp2;
}
void checkUnequal(const DnsTlsServer& s1, const DnsTlsServer& s2) {
EXPECT_TRUE(s1 == s1);
EXPECT_TRUE(s2 == s2);
EXPECT_TRUE(isAddressEqual(s1, s1));
EXPECT_TRUE(isAddressEqual(s2, s2));
EXPECT_TRUE(s1 < s2 ^ s2 < s1);
EXPECT_FALSE(s1 == s2);
EXPECT_FALSE(s2 == s1);
}
class ServerTest : public BaseTest {};
TEST_F(ServerTest, IPv4) {
checkUnequal(V4ADDR1, V4ADDR2);
EXPECT_FALSE(isAddressEqual(V4ADDR1, V4ADDR2));
}
TEST_F(ServerTest, IPv6) {
checkUnequal(V6ADDR1, V6ADDR2);
EXPECT_FALSE(isAddressEqual(V6ADDR1, V6ADDR2));
}
TEST_F(ServerTest, MixedAddressFamily) {
checkUnequal(V6ADDR1, V4ADDR1);
EXPECT_FALSE(isAddressEqual(V6ADDR1, V4ADDR1));
}
TEST_F(ServerTest, IPv6ScopeId) {
DnsTlsServer s1(V6ADDR1), s2(V6ADDR1);
sockaddr_in6* addr1 = reinterpret_cast<sockaddr_in6*>(&s1.ss);
addr1->sin6_scope_id = 1;
sockaddr_in6* addr2 = reinterpret_cast<sockaddr_in6*>(&s2.ss);
addr2->sin6_scope_id = 2;
checkUnequal(s1, s2);
EXPECT_FALSE(isAddressEqual(s1, s2));
EXPECT_FALSE(s1.wasExplicitlyConfigured());
EXPECT_FALSE(s2.wasExplicitlyConfigured());
}
TEST_F(ServerTest, IPv6FlowInfo) {
DnsTlsServer s1(V6ADDR1), s2(V6ADDR1);
sockaddr_in6* addr1 = reinterpret_cast<sockaddr_in6*>(&s1.ss);
addr1->sin6_flowinfo = 1;
sockaddr_in6* addr2 = reinterpret_cast<sockaddr_in6*>(&s2.ss);
addr2->sin6_flowinfo = 2;
// All comparisons ignore flowinfo.
EXPECT_EQ(s1, s2);
EXPECT_TRUE(isAddressEqual(s1, s2));
EXPECT_FALSE(s1.wasExplicitlyConfigured());
EXPECT_FALSE(s2.wasExplicitlyConfigured());
}
TEST_F(ServerTest, Port) {
DnsTlsServer s1, s2;
parseServer("192.0.2.1", 853, &s1.ss);
parseServer("192.0.2.1", 854, &s2.ss);
checkUnequal(s1, s2);
EXPECT_TRUE(isAddressEqual(s1, s2));
DnsTlsServer s3, s4;
parseServer("2001:db8::1", 853, &s3.ss);
parseServer("2001:db8::1", 852, &s4.ss);
checkUnequal(s3, s4);
EXPECT_TRUE(isAddressEqual(s3, s4));
EXPECT_FALSE(s1.wasExplicitlyConfigured());
EXPECT_FALSE(s2.wasExplicitlyConfigured());
}
TEST_F(ServerTest, Name) {
DnsTlsServer s1(V4ADDR1), s2(V4ADDR1);
s1.name = SERVERNAME1;
checkUnequal(s1, s2);
s2.name = SERVERNAME2;
checkUnequal(s1, s2);
EXPECT_TRUE(isAddressEqual(s1, s2));
EXPECT_TRUE(s1.wasExplicitlyConfigured());
EXPECT_TRUE(s2.wasExplicitlyConfigured());
}
TEST_F(ServerTest, Fingerprint) {
DnsTlsServer s1(V4ADDR1), s2(V4ADDR1);
s1.fingerprints.insert(FINGERPRINT1);
checkUnequal(s1, s2);
EXPECT_TRUE(isAddressEqual(s1, s2));
s2.fingerprints.insert(FINGERPRINT2);
checkUnequal(s1, s2);
EXPECT_TRUE(isAddressEqual(s1, s2));
s2.fingerprints.insert(FINGERPRINT1);
checkUnequal(s1, s2);
EXPECT_TRUE(isAddressEqual(s1, s2));
s1.fingerprints.insert(FINGERPRINT2);
EXPECT_EQ(s1, s2);
EXPECT_TRUE(isAddressEqual(s1, s2));
EXPECT_TRUE(s1.wasExplicitlyConfigured());
EXPECT_TRUE(s2.wasExplicitlyConfigured());
}
TEST(QueryMapTest, Basic) {
DnsTlsQueryMap map;
EXPECT_TRUE(map.empty());
bytevec q0 = make_query(999, SIZE);
bytevec q1 = make_query(888, SIZE);
bytevec q2 = make_query(777, SIZE);
auto f0 = map.recordQuery(makeSlice(q0));
auto f1 = map.recordQuery(makeSlice(q1));
auto f2 = map.recordQuery(makeSlice(q2));
// Check return values of recordQuery
EXPECT_EQ(0, f0->query.newId);
EXPECT_EQ(1, f1->query.newId);
EXPECT_EQ(2, f2->query.newId);
// Check side effects of recordQuery
EXPECT_FALSE(map.empty());
auto all = map.getAll();
EXPECT_EQ(3U, all.size());
EXPECT_EQ(0, all[0].newId);
EXPECT_EQ(1, all[1].newId);
EXPECT_EQ(2, all[2].newId);
EXPECT_EQ(makeSlice(q0), all[0].query);
EXPECT_EQ(makeSlice(q1), all[1].query);
EXPECT_EQ(makeSlice(q2), all[2].query);
bytevec a0 = make_query(0, SIZE);
bytevec a1 = make_query(1, SIZE);
bytevec a2 = make_query(2, SIZE);
// Return responses out of order
map.onResponse(a2);
map.onResponse(a0);
map.onResponse(a1);
EXPECT_TRUE(map.empty());
auto r0 = f0->result.get();
auto r1 = f1->result.get();
auto r2 = f2->result.get();
EXPECT_EQ(DnsTlsQueryMap::Response::success, r0.code);
EXPECT_EQ(DnsTlsQueryMap::Response::success, r1.code);
EXPECT_EQ(DnsTlsQueryMap::Response::success, r2.code);
const bytevec& d0 = r0.response;
const bytevec& d1 = r1.response;
const bytevec& d2 = r2.response;
// The ID should match the query
EXPECT_EQ(999, d0[0] << 8 | d0[1]);
EXPECT_EQ(888, d1[0] << 8 | d1[1]);
EXPECT_EQ(777, d2[0] << 8 | d2[1]);
// The body should match the answer
EXPECT_EQ(bytevec(a0.begin() + 2, a0.end()), bytevec(d0.begin() + 2, d0.end()));
EXPECT_EQ(bytevec(a1.begin() + 2, a1.end()), bytevec(d1.begin() + 2, d1.end()));
EXPECT_EQ(bytevec(a2.begin() + 2, a2.end()), bytevec(d2.begin() + 2, d2.end()));
}
TEST(QueryMapTest, FillHole) {
DnsTlsQueryMap map;
std::vector<std::unique_ptr<DnsTlsQueryMap::QueryFuture>> futures(UINT16_MAX + 1);
for (uint32_t i = 0; i <= UINT16_MAX; ++i) {
futures[i] = map.recordQuery(makeSlice(QUERY));
ASSERT_TRUE(futures[i]); // answers[i] should be nonnull.
EXPECT_EQ(i, futures[i]->query.newId);
}
// The map should now be full.
EXPECT_EQ(size_t(UINT16_MAX + 1), map.getAll().size());
// Trying to add another query should fail because the map is full.
EXPECT_FALSE(map.recordQuery(makeSlice(QUERY)));
// Send an answer to query 40000
auto answer = make_query(40000, SIZE);
map.onResponse(answer);
auto result = futures[40000]->result.get();
EXPECT_EQ(DnsTlsQueryMap::Response::success, result.code);
EXPECT_EQ(ID, result.response[0] << 8 | result.response[1]);
EXPECT_EQ(bytevec(answer.begin() + 2, answer.end()),
bytevec(result.response.begin() + 2, result.response.end()));
// There should now be room in the map.
EXPECT_EQ(size_t(UINT16_MAX), map.getAll().size());
auto f = map.recordQuery(makeSlice(QUERY));
ASSERT_TRUE(f);
EXPECT_EQ(40000, f->query.newId);
// The map should now be full again.
EXPECT_EQ(size_t(UINT16_MAX + 1), map.getAll().size());
EXPECT_FALSE(map.recordQuery(makeSlice(QUERY)));
}
class StubObserver : public IDnsTlsSocketObserver {
public:
bool closed = false;
void onResponse(std::vector<uint8_t>) override {}
void onClosed() override { closed = true; }
};
TEST(DnsTlsSocketTest, SlowDestructor) {
constexpr char tls_addr[] = "127.0.0.3";
constexpr char tls_port[] = "8530"; // High-numbered port so root isn't required.
// This test doesn't perform any queries, so the backend address can be invalid.
constexpr char backend_addr[] = "192.0.2.1";
constexpr char backend_port[] = "1";
test::DnsTlsFrontend tls(tls_addr, tls_port, backend_addr, backend_port);
ASSERT_TRUE(tls.startServer());
DnsTlsServer server;
parseServer(tls_addr, 8530, &server.ss);
StubObserver observer;
ASSERT_FALSE(observer.closed);
DnsTlsSessionCache cache;
auto socket = std::make_unique<DnsTlsSocket>(server, MARK, &observer, &cache);
ASSERT_TRUE(socket->initialize());
// Test: Time the socket destructor. This should be fast.
auto before = std::chrono::steady_clock::now();
socket.reset();
auto after = std::chrono::steady_clock::now();
auto delay = after - before;
ALOGV("Shutdown took %lld ns", delay / std::chrono::nanoseconds{1});
EXPECT_TRUE(observer.closed);
// Shutdown should complete in milliseconds, but if the shutdown signal is lost
// it will wait for the timeout, which is expected to take 20seconds.
EXPECT_LT(delay, std::chrono::seconds{5});
}
} // end of namespace net
} // end of namespace android
|