diff options
| author | Ralf Luther <luther.ralf@gmail.com> | 2019-03-27 20:23:17 +0000 |
|---|---|---|
| committer | Gerrit Code Review <gerrit2@aicp-server-3> | 2019-03-27 20:23:17 +0000 |
| commit | 1ce3a9d272e564b22a1333a1e36a3d3ab7cfab01 (patch) | |
| tree | 391382eadd4fec5bb480f2e8934fa352770221d1 /clang-r353983/include/llvm/CodeGen/PBQP | |
| parent | d1d48b140bafaa8a50107292f5fce95562575765 (diff) | |
| parent | 4f56932d3416ac03f646bc1a611b3135fec2fe08 (diff) | |
Merge "Update prebuilt Clang to r353983." into p9.0HEADp9.0-backupp9.0
Diffstat (limited to 'clang-r353983/include/llvm/CodeGen/PBQP')
| -rw-r--r-- | clang-r353983/include/llvm/CodeGen/PBQP/CostAllocator.h | 134 | ||||
| -rw-r--r-- | clang-r353983/include/llvm/CodeGen/PBQP/Graph.h | 674 | ||||
| -rw-r--r-- | clang-r353983/include/llvm/CodeGen/PBQP/Math.h | 291 | ||||
| -rw-r--r-- | clang-r353983/include/llvm/CodeGen/PBQP/ReductionRules.h | 222 | ||||
| -rw-r--r-- | clang-r353983/include/llvm/CodeGen/PBQP/Solution.h | 55 |
5 files changed, 1376 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/CodeGen/PBQP/CostAllocator.h b/clang-r353983/include/llvm/CodeGen/PBQP/CostAllocator.h new file mode 100644 index 00000000..0d6d8a31 --- /dev/null +++ b/clang-r353983/include/llvm/CodeGen/PBQP/CostAllocator.h @@ -0,0 +1,134 @@ +//===- CostAllocator.h - PBQP Cost Allocator --------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Defines classes conforming to the PBQP cost value manager concept. +// +// Cost value managers are memory managers for PBQP cost values (vectors and +// matrices). Since PBQP graphs can grow very large (E.g. hundreds of thousands +// of edges on the largest function in SPEC2006). +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_PBQP_COSTALLOCATOR_H +#define LLVM_CODEGEN_PBQP_COSTALLOCATOR_H + +#include "llvm/ADT/DenseSet.h" +#include <algorithm> +#include <cstdint> +#include <memory> + +namespace llvm { +namespace PBQP { + +template <typename ValueT> class ValuePool { +public: + using PoolRef = std::shared_ptr<const ValueT>; + +private: + class PoolEntry : public std::enable_shared_from_this<PoolEntry> { + public: + template <typename ValueKeyT> + PoolEntry(ValuePool &Pool, ValueKeyT Value) + : Pool(Pool), Value(std::move(Value)) {} + + ~PoolEntry() { Pool.removeEntry(this); } + + const ValueT &getValue() const { return Value; } + + private: + ValuePool &Pool; + ValueT Value; + }; + + class PoolEntryDSInfo { + public: + static inline PoolEntry *getEmptyKey() { return nullptr; } + + static inline PoolEntry *getTombstoneKey() { + return reinterpret_cast<PoolEntry *>(static_cast<uintptr_t>(1)); + } + + template <typename ValueKeyT> + static unsigned getHashValue(const ValueKeyT &C) { + return hash_value(C); + } + + static unsigned getHashValue(PoolEntry *P) { + return getHashValue(P->getValue()); + } + + static unsigned getHashValue(const PoolEntry *P) { + return getHashValue(P->getValue()); + } + + template <typename ValueKeyT1, typename ValueKeyT2> + static bool isEqual(const ValueKeyT1 &C1, const ValueKeyT2 &C2) { + return C1 == C2; + } + + template <typename ValueKeyT> + static bool isEqual(const ValueKeyT &C, PoolEntry *P) { + if (P == getEmptyKey() || P == getTombstoneKey()) + return false; + return isEqual(C, P->getValue()); + } + + static bool isEqual(PoolEntry *P1, PoolEntry *P2) { + if (P1 == getEmptyKey() || P1 == getTombstoneKey()) + return P1 == P2; + return isEqual(P1->getValue(), P2); + } + }; + + using EntrySetT = DenseSet<PoolEntry *, PoolEntryDSInfo>; + + EntrySetT EntrySet; + + void removeEntry(PoolEntry *P) { EntrySet.erase(P); } + +public: + template <typename ValueKeyT> PoolRef getValue(ValueKeyT ValueKey) { + typename EntrySetT::iterator I = EntrySet.find_as(ValueKey); + + if (I != EntrySet.end()) + return PoolRef((*I)->shared_from_this(), &(*I)->getValue()); + + auto P = std::make_shared<PoolEntry>(*this, std::move(ValueKey)); + EntrySet.insert(P.get()); + return PoolRef(std::move(P), &P->getValue()); + } +}; + +template <typename VectorT, typename MatrixT> class PoolCostAllocator { +private: + using VectorCostPool = ValuePool<VectorT>; + using MatrixCostPool = ValuePool<MatrixT>; + +public: + using Vector = VectorT; + using Matrix = MatrixT; + using VectorPtr = typename VectorCostPool::PoolRef; + using MatrixPtr = typename MatrixCostPool::PoolRef; + + template <typename VectorKeyT> VectorPtr getVector(VectorKeyT v) { + return VectorPool.getValue(std::move(v)); + } + + template <typename MatrixKeyT> MatrixPtr getMatrix(MatrixKeyT m) { + return MatrixPool.getValue(std::move(m)); + } + +private: + VectorCostPool VectorPool; + MatrixCostPool MatrixPool; +}; + +} // end namespace PBQP +} // end namespace llvm + +#endif // LLVM_CODEGEN_PBQP_COSTALLOCATOR_H diff --git a/clang-r353983/include/llvm/CodeGen/PBQP/Graph.h b/clang-r353983/include/llvm/CodeGen/PBQP/Graph.h new file mode 100644 index 00000000..c2cd6dad --- /dev/null +++ b/clang-r353983/include/llvm/CodeGen/PBQP/Graph.h @@ -0,0 +1,674 @@ +//===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// PBQP Graph class. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_PBQP_GRAPH_H +#define LLVM_CODEGEN_PBQP_GRAPH_H + +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +#include <cassert> +#include <iterator> +#include <limits> +#include <vector> + +namespace llvm { +namespace PBQP { + + class GraphBase { + public: + using NodeId = unsigned; + using EdgeId = unsigned; + + /// Returns a value representing an invalid (non-existent) node. + static NodeId invalidNodeId() { + return std::numeric_limits<NodeId>::max(); + } + + /// Returns a value representing an invalid (non-existent) edge. + static EdgeId invalidEdgeId() { + return std::numeric_limits<EdgeId>::max(); + } + }; + + /// PBQP Graph class. + /// Instances of this class describe PBQP problems. + /// + template <typename SolverT> + class Graph : public GraphBase { + private: + using CostAllocator = typename SolverT::CostAllocator; + + public: + using RawVector = typename SolverT::RawVector; + using RawMatrix = typename SolverT::RawMatrix; + using Vector = typename SolverT::Vector; + using Matrix = typename SolverT::Matrix; + using VectorPtr = typename CostAllocator::VectorPtr; + using MatrixPtr = typename CostAllocator::MatrixPtr; + using NodeMetadata = typename SolverT::NodeMetadata; + using EdgeMetadata = typename SolverT::EdgeMetadata; + using GraphMetadata = typename SolverT::GraphMetadata; + + private: + class NodeEntry { + public: + using AdjEdgeList = std::vector<EdgeId>; + using AdjEdgeIdx = AdjEdgeList::size_type; + using AdjEdgeItr = AdjEdgeList::const_iterator; + + NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {} + + static AdjEdgeIdx getInvalidAdjEdgeIdx() { + return std::numeric_limits<AdjEdgeIdx>::max(); + } + + AdjEdgeIdx addAdjEdgeId(EdgeId EId) { + AdjEdgeIdx Idx = AdjEdgeIds.size(); + AdjEdgeIds.push_back(EId); + return Idx; + } + + void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) { + // Swap-and-pop for fast removal. + // 1) Update the adj index of the edge currently at back(). + // 2) Move last Edge down to Idx. + // 3) pop_back() + // If Idx == size() - 1 then the setAdjEdgeIdx and swap are + // redundant, but both operations are cheap. + G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx); + AdjEdgeIds[Idx] = AdjEdgeIds.back(); + AdjEdgeIds.pop_back(); + } + + const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; } + + VectorPtr Costs; + NodeMetadata Metadata; + + private: + AdjEdgeList AdjEdgeIds; + }; + + class EdgeEntry { + public: + EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs) + : Costs(std::move(Costs)) { + NIds[0] = N1Id; + NIds[1] = N2Id; + ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx(); + ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx(); + } + + void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) { + assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() && + "Edge already connected to NIds[NIdx]."); + NodeEntry &N = G.getNode(NIds[NIdx]); + ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId); + } + + void connect(Graph &G, EdgeId ThisEdgeId) { + connectToN(G, ThisEdgeId, 0); + connectToN(G, ThisEdgeId, 1); + } + + void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) { + if (NId == NIds[0]) + ThisEdgeAdjIdxs[0] = NewIdx; + else { + assert(NId == NIds[1] && "Edge not connected to NId"); + ThisEdgeAdjIdxs[1] = NewIdx; + } + } + + void disconnectFromN(Graph &G, unsigned NIdx) { + assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() && + "Edge not connected to NIds[NIdx]."); + NodeEntry &N = G.getNode(NIds[NIdx]); + N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]); + ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx(); + } + + void disconnectFrom(Graph &G, NodeId NId) { + if (NId == NIds[0]) + disconnectFromN(G, 0); + else { + assert(NId == NIds[1] && "Edge does not connect NId"); + disconnectFromN(G, 1); + } + } + + NodeId getN1Id() const { return NIds[0]; } + NodeId getN2Id() const { return NIds[1]; } + + MatrixPtr Costs; + EdgeMetadata Metadata; + + private: + NodeId NIds[2]; + typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2]; + }; + + // ----- MEMBERS ----- + + GraphMetadata Metadata; + CostAllocator CostAlloc; + SolverT *Solver = nullptr; + + using NodeVector = std::vector<NodeEntry>; + using FreeNodeVector = std::vector<NodeId>; + NodeVector Nodes; + FreeNodeVector FreeNodeIds; + + using EdgeVector = std::vector<EdgeEntry>; + using FreeEdgeVector = std::vector<EdgeId>; + EdgeVector Edges; + FreeEdgeVector FreeEdgeIds; + + Graph(const Graph &Other) {} + + // ----- INTERNAL METHODS ----- + + NodeEntry &getNode(NodeId NId) { + assert(NId < Nodes.size() && "Out of bound NodeId"); + return Nodes[NId]; + } + const NodeEntry &getNode(NodeId NId) const { + assert(NId < Nodes.size() && "Out of bound NodeId"); + return Nodes[NId]; + } + + EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; } + const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; } + + NodeId addConstructedNode(NodeEntry N) { + NodeId NId = 0; + if (!FreeNodeIds.empty()) { + NId = FreeNodeIds.back(); + FreeNodeIds.pop_back(); + Nodes[NId] = std::move(N); + } else { + NId = Nodes.size(); + Nodes.push_back(std::move(N)); + } + return NId; + } + + EdgeId addConstructedEdge(EdgeEntry E) { + assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() && + "Attempt to add duplicate edge."); + EdgeId EId = 0; + if (!FreeEdgeIds.empty()) { + EId = FreeEdgeIds.back(); + FreeEdgeIds.pop_back(); + Edges[EId] = std::move(E); + } else { + EId = Edges.size(); + Edges.push_back(std::move(E)); + } + + EdgeEntry &NE = getEdge(EId); + + // Add the edge to the adjacency sets of its nodes. + NE.connect(*this, EId); + return EId; + } + + void operator=(const Graph &Other) {} + + public: + using AdjEdgeItr = typename NodeEntry::AdjEdgeItr; + + class NodeItr { + public: + using iterator_category = std::forward_iterator_tag; + using value_type = NodeId; + using difference_type = int; + using pointer = NodeId *; + using reference = NodeId &; + + NodeItr(NodeId CurNId, const Graph &G) + : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) { + this->CurNId = findNextInUse(CurNId); // Move to first in-use node id + } + + bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; } + bool operator!=(const NodeItr &O) const { return !(*this == O); } + NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; } + NodeId operator*() const { return CurNId; } + + private: + NodeId findNextInUse(NodeId NId) const { + while (NId < EndNId && is_contained(FreeNodeIds, NId)) { + ++NId; + } + return NId; + } + + NodeId CurNId, EndNId; + const FreeNodeVector &FreeNodeIds; + }; + + class EdgeItr { + public: + EdgeItr(EdgeId CurEId, const Graph &G) + : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) { + this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id + } + + bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; } + bool operator!=(const EdgeItr &O) const { return !(*this == O); } + EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; } + EdgeId operator*() const { return CurEId; } + + private: + EdgeId findNextInUse(EdgeId EId) const { + while (EId < EndEId && is_contained(FreeEdgeIds, EId)) { + ++EId; + } + return EId; + } + + EdgeId CurEId, EndEId; + const FreeEdgeVector &FreeEdgeIds; + }; + + class NodeIdSet { + public: + NodeIdSet(const Graph &G) : G(G) {} + + NodeItr begin() const { return NodeItr(0, G); } + NodeItr end() const { return NodeItr(G.Nodes.size(), G); } + + bool empty() const { return G.Nodes.empty(); } + + typename NodeVector::size_type size() const { + return G.Nodes.size() - G.FreeNodeIds.size(); + } + + private: + const Graph& G; + }; + + class EdgeIdSet { + public: + EdgeIdSet(const Graph &G) : G(G) {} + + EdgeItr begin() const { return EdgeItr(0, G); } + EdgeItr end() const { return EdgeItr(G.Edges.size(), G); } + + bool empty() const { return G.Edges.empty(); } + + typename NodeVector::size_type size() const { + return G.Edges.size() - G.FreeEdgeIds.size(); + } + + private: + const Graph& G; + }; + + class AdjEdgeIdSet { + public: + AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {} + + typename NodeEntry::AdjEdgeItr begin() const { + return NE.getAdjEdgeIds().begin(); + } + + typename NodeEntry::AdjEdgeItr end() const { + return NE.getAdjEdgeIds().end(); + } + + bool empty() const { return NE.getAdjEdgeIds().empty(); } + + typename NodeEntry::AdjEdgeList::size_type size() const { + return NE.getAdjEdgeIds().size(); + } + + private: + const NodeEntry &NE; + }; + + /// Construct an empty PBQP graph. + Graph() = default; + + /// Construct an empty PBQP graph with the given graph metadata. + Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {} + + /// Get a reference to the graph metadata. + GraphMetadata& getMetadata() { return Metadata; } + + /// Get a const-reference to the graph metadata. + const GraphMetadata& getMetadata() const { return Metadata; } + + /// Lock this graph to the given solver instance in preparation + /// for running the solver. This method will call solver.handleAddNode for + /// each node in the graph, and handleAddEdge for each edge, to give the + /// solver an opportunity to set up any requried metadata. + void setSolver(SolverT &S) { + assert(!Solver && "Solver already set. Call unsetSolver()."); + Solver = &S; + for (auto NId : nodeIds()) + Solver->handleAddNode(NId); + for (auto EId : edgeIds()) + Solver->handleAddEdge(EId); + } + + /// Release from solver instance. + void unsetSolver() { + assert(Solver && "Solver not set."); + Solver = nullptr; + } + + /// Add a node with the given costs. + /// @param Costs Cost vector for the new node. + /// @return Node iterator for the added node. + template <typename OtherVectorT> + NodeId addNode(OtherVectorT Costs) { + // Get cost vector from the problem domain + VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); + NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts)); + if (Solver) + Solver->handleAddNode(NId); + return NId; + } + + /// Add a node bypassing the cost allocator. + /// @param Costs Cost vector ptr for the new node (must be convertible to + /// VectorPtr). + /// @return Node iterator for the added node. + /// + /// This method allows for fast addition of a node whose costs don't need + /// to be passed through the cost allocator. The most common use case for + /// this is when duplicating costs from an existing node (when using a + /// pooling allocator). These have already been uniqued, so we can avoid + /// re-constructing and re-uniquing them by attaching them directly to the + /// new node. + template <typename OtherVectorPtrT> + NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) { + NodeId NId = addConstructedNode(NodeEntry(Costs)); + if (Solver) + Solver->handleAddNode(NId); + return NId; + } + + /// Add an edge between the given nodes with the given costs. + /// @param N1Id First node. + /// @param N2Id Second node. + /// @param Costs Cost matrix for new edge. + /// @return Edge iterator for the added edge. + template <typename OtherVectorT> + EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) { + assert(getNodeCosts(N1Id).getLength() == Costs.getRows() && + getNodeCosts(N2Id).getLength() == Costs.getCols() && + "Matrix dimensions mismatch."); + // Get cost matrix from the problem domain. + MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); + EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts)); + if (Solver) + Solver->handleAddEdge(EId); + return EId; + } + + /// Add an edge bypassing the cost allocator. + /// @param N1Id First node. + /// @param N2Id Second node. + /// @param Costs Cost matrix for new edge. + /// @return Edge iterator for the added edge. + /// + /// This method allows for fast addition of an edge whose costs don't need + /// to be passed through the cost allocator. The most common use case for + /// this is when duplicating costs from an existing edge (when using a + /// pooling allocator). These have already been uniqued, so we can avoid + /// re-constructing and re-uniquing them by attaching them directly to the + /// new edge. + template <typename OtherMatrixPtrT> + NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id, + OtherMatrixPtrT Costs) { + assert(getNodeCosts(N1Id).getLength() == Costs->getRows() && + getNodeCosts(N2Id).getLength() == Costs->getCols() && + "Matrix dimensions mismatch."); + // Get cost matrix from the problem domain. + EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs)); + if (Solver) + Solver->handleAddEdge(EId); + return EId; + } + + /// Returns true if the graph is empty. + bool empty() const { return NodeIdSet(*this).empty(); } + + NodeIdSet nodeIds() const { return NodeIdSet(*this); } + EdgeIdSet edgeIds() const { return EdgeIdSet(*this); } + + AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); } + + /// Get the number of nodes in the graph. + /// @return Number of nodes in the graph. + unsigned getNumNodes() const { return NodeIdSet(*this).size(); } + + /// Get the number of edges in the graph. + /// @return Number of edges in the graph. + unsigned getNumEdges() const { return EdgeIdSet(*this).size(); } + + /// Set a node's cost vector. + /// @param NId Node to update. + /// @param Costs New costs to set. + template <typename OtherVectorT> + void setNodeCosts(NodeId NId, OtherVectorT Costs) { + VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); + if (Solver) + Solver->handleSetNodeCosts(NId, *AllocatedCosts); + getNode(NId).Costs = AllocatedCosts; + } + + /// Get a VectorPtr to a node's cost vector. Rarely useful - use + /// getNodeCosts where possible. + /// @param NId Node id. + /// @return VectorPtr to node cost vector. + /// + /// This method is primarily useful for duplicating costs quickly by + /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer + /// getNodeCosts when dealing with node cost values. + const VectorPtr& getNodeCostsPtr(NodeId NId) const { + return getNode(NId).Costs; + } + + /// Get a node's cost vector. + /// @param NId Node id. + /// @return Node cost vector. + const Vector& getNodeCosts(NodeId NId) const { + return *getNodeCostsPtr(NId); + } + + NodeMetadata& getNodeMetadata(NodeId NId) { + return getNode(NId).Metadata; + } + + const NodeMetadata& getNodeMetadata(NodeId NId) const { + return getNode(NId).Metadata; + } + + typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const { + return getNode(NId).getAdjEdgeIds().size(); + } + + /// Update an edge's cost matrix. + /// @param EId Edge id. + /// @param Costs New cost matrix. + template <typename OtherMatrixT> + void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) { + MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); + if (Solver) + Solver->handleUpdateCosts(EId, *AllocatedCosts); + getEdge(EId).Costs = AllocatedCosts; + } + + /// Get a MatrixPtr to a node's cost matrix. Rarely useful - use + /// getEdgeCosts where possible. + /// @param EId Edge id. + /// @return MatrixPtr to edge cost matrix. + /// + /// This method is primarily useful for duplicating costs quickly by + /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer + /// getEdgeCosts when dealing with edge cost values. + const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const { + return getEdge(EId).Costs; + } + + /// Get an edge's cost matrix. + /// @param EId Edge id. + /// @return Edge cost matrix. + const Matrix& getEdgeCosts(EdgeId EId) const { + return *getEdge(EId).Costs; + } + + EdgeMetadata& getEdgeMetadata(EdgeId EId) { + return getEdge(EId).Metadata; + } + + const EdgeMetadata& getEdgeMetadata(EdgeId EId) const { + return getEdge(EId).Metadata; + } + + /// Get the first node connected to this edge. + /// @param EId Edge id. + /// @return The first node connected to the given edge. + NodeId getEdgeNode1Id(EdgeId EId) const { + return getEdge(EId).getN1Id(); + } + + /// Get the second node connected to this edge. + /// @param EId Edge id. + /// @return The second node connected to the given edge. + NodeId getEdgeNode2Id(EdgeId EId) const { + return getEdge(EId).getN2Id(); + } + + /// Get the "other" node connected to this edge. + /// @param EId Edge id. + /// @param NId Node id for the "given" node. + /// @return The iterator for the "other" node connected to this edge. + NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) { + EdgeEntry &E = getEdge(EId); + if (E.getN1Id() == NId) { + return E.getN2Id(); + } // else + return E.getN1Id(); + } + + /// Get the edge connecting two nodes. + /// @param N1Id First node id. + /// @param N2Id Second node id. + /// @return An id for edge (N1Id, N2Id) if such an edge exists, + /// otherwise returns an invalid edge id. + EdgeId findEdge(NodeId N1Id, NodeId N2Id) { + for (auto AEId : adjEdgeIds(N1Id)) { + if ((getEdgeNode1Id(AEId) == N2Id) || + (getEdgeNode2Id(AEId) == N2Id)) { + return AEId; + } + } + return invalidEdgeId(); + } + + /// Remove a node from the graph. + /// @param NId Node id. + void removeNode(NodeId NId) { + if (Solver) + Solver->handleRemoveNode(NId); + NodeEntry &N = getNode(NId); + // TODO: Can this be for-each'd? + for (AdjEdgeItr AEItr = N.adjEdgesBegin(), + AEEnd = N.adjEdgesEnd(); + AEItr != AEEnd;) { + EdgeId EId = *AEItr; + ++AEItr; + removeEdge(EId); + } + FreeNodeIds.push_back(NId); + } + + /// Disconnect an edge from the given node. + /// + /// Removes the given edge from the adjacency list of the given node. + /// This operation leaves the edge in an 'asymmetric' state: It will no + /// longer appear in an iteration over the given node's (NId's) edges, but + /// will appear in an iteration over the 'other', unnamed node's edges. + /// + /// This does not correspond to any normal graph operation, but exists to + /// support efficient PBQP graph-reduction based solvers. It is used to + /// 'effectively' remove the unnamed node from the graph while the solver + /// is performing the reduction. The solver will later call reconnectNode + /// to restore the edge in the named node's adjacency list. + /// + /// Since the degree of a node is the number of connected edges, + /// disconnecting an edge from a node 'u' will cause the degree of 'u' to + /// drop by 1. + /// + /// A disconnected edge WILL still appear in an iteration over the graph + /// edges. + /// + /// A disconnected edge should not be removed from the graph, it should be + /// reconnected first. + /// + /// A disconnected edge can be reconnected by calling the reconnectEdge + /// method. + void disconnectEdge(EdgeId EId, NodeId NId) { + if (Solver) + Solver->handleDisconnectEdge(EId, NId); + + EdgeEntry &E = getEdge(EId); + E.disconnectFrom(*this, NId); + } + + /// Convenience method to disconnect all neighbours from the given + /// node. + void disconnectAllNeighborsFromNode(NodeId NId) { + for (auto AEId : adjEdgeIds(NId)) + disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId)); + } + + /// Re-attach an edge to its nodes. + /// + /// Adds an edge that had been previously disconnected back into the + /// adjacency set of the nodes that the edge connects. + void reconnectEdge(EdgeId EId, NodeId NId) { + EdgeEntry &E = getEdge(EId); + E.connectTo(*this, EId, NId); + if (Solver) + Solver->handleReconnectEdge(EId, NId); + } + + /// Remove an edge from the graph. + /// @param EId Edge id. + void removeEdge(EdgeId EId) { + if (Solver) + Solver->handleRemoveEdge(EId); + EdgeEntry &E = getEdge(EId); + E.disconnect(); + FreeEdgeIds.push_back(EId); + Edges[EId].invalidate(); + } + + /// Remove all nodes and edges from the graph. + void clear() { + Nodes.clear(); + FreeNodeIds.clear(); + Edges.clear(); + FreeEdgeIds.clear(); + } + }; + +} // end namespace PBQP +} // end namespace llvm + +#endif // LLVM_CODEGEN_PBQP_GRAPH_HPP diff --git a/clang-r353983/include/llvm/CodeGen/PBQP/Math.h b/clang-r353983/include/llvm/CodeGen/PBQP/Math.h new file mode 100644 index 00000000..8b014ccb --- /dev/null +++ b/clang-r353983/include/llvm/CodeGen/PBQP/Math.h @@ -0,0 +1,291 @@ +//===- Math.h - PBQP Vector and Matrix classes ------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_PBQP_MATH_H +#define LLVM_CODEGEN_PBQP_MATH_H + +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +#include <cassert> +#include <functional> +#include <memory> + +namespace llvm { +namespace PBQP { + +using PBQPNum = float; + +/// PBQP Vector class. +class Vector { + friend hash_code hash_value(const Vector &); + +public: + /// Construct a PBQP vector of the given size. + explicit Vector(unsigned Length) + : Length(Length), Data(llvm::make_unique<PBQPNum []>(Length)) {} + + /// Construct a PBQP vector with initializer. + Vector(unsigned Length, PBQPNum InitVal) + : Length(Length), Data(llvm::make_unique<PBQPNum []>(Length)) { + std::fill(Data.get(), Data.get() + Length, InitVal); + } + + /// Copy construct a PBQP vector. + Vector(const Vector &V) + : Length(V.Length), Data(llvm::make_unique<PBQPNum []>(Length)) { + std::copy(V.Data.get(), V.Data.get() + Length, Data.get()); + } + + /// Move construct a PBQP vector. + Vector(Vector &&V) + : Length(V.Length), Data(std::move(V.Data)) { + V.Length = 0; + } + + /// Comparison operator. + bool operator==(const Vector &V) const { + assert(Length != 0 && Data && "Invalid vector"); + if (Length != V.Length) + return false; + return std::equal(Data.get(), Data.get() + Length, V.Data.get()); + } + + /// Return the length of the vector + unsigned getLength() const { + assert(Length != 0 && Data && "Invalid vector"); + return Length; + } + + /// Element access. + PBQPNum& operator[](unsigned Index) { + assert(Length != 0 && Data && "Invalid vector"); + assert(Index < Length && "Vector element access out of bounds."); + return Data[Index]; + } + + /// Const element access. + const PBQPNum& operator[](unsigned Index) const { + assert(Length != 0 && Data && "Invalid vector"); + assert(Index < Length && "Vector element access out of bounds."); + return Data[Index]; + } + + /// Add another vector to this one. + Vector& operator+=(const Vector &V) { + assert(Length != 0 && Data && "Invalid vector"); + assert(Length == V.Length && "Vector length mismatch."); + std::transform(Data.get(), Data.get() + Length, V.Data.get(), Data.get(), + std::plus<PBQPNum>()); + return *this; + } + + /// Returns the index of the minimum value in this vector + unsigned minIndex() const { + assert(Length != 0 && Data && "Invalid vector"); + return std::min_element(Data.get(), Data.get() + Length) - Data.get(); + } + +private: + unsigned Length; + std::unique_ptr<PBQPNum []> Data; +}; + +/// Return a hash_value for the given vector. +inline hash_code hash_value(const Vector &V) { + unsigned *VBegin = reinterpret_cast<unsigned*>(V.Data.get()); + unsigned *VEnd = reinterpret_cast<unsigned*>(V.Data.get() + V.Length); + return hash_combine(V.Length, hash_combine_range(VBegin, VEnd)); +} + +/// Output a textual representation of the given vector on the given +/// output stream. +template <typename OStream> +OStream& operator<<(OStream &OS, const Vector &V) { + assert((V.getLength() != 0) && "Zero-length vector badness."); + + OS << "[ " << V[0]; + for (unsigned i = 1; i < V.getLength(); ++i) + OS << ", " << V[i]; + OS << " ]"; + + return OS; +} + +/// PBQP Matrix class +class Matrix { +private: + friend hash_code hash_value(const Matrix &); + +public: + /// Construct a PBQP Matrix with the given dimensions. + Matrix(unsigned Rows, unsigned Cols) : + Rows(Rows), Cols(Cols), Data(llvm::make_unique<PBQPNum []>(Rows * Cols)) { + } + + /// Construct a PBQP Matrix with the given dimensions and initial + /// value. + Matrix(unsigned Rows, unsigned Cols, PBQPNum InitVal) + : Rows(Rows), Cols(Cols), + Data(llvm::make_unique<PBQPNum []>(Rows * Cols)) { + std::fill(Data.get(), Data.get() + (Rows * Cols), InitVal); + } + + /// Copy construct a PBQP matrix. + Matrix(const Matrix &M) + : Rows(M.Rows), Cols(M.Cols), + Data(llvm::make_unique<PBQPNum []>(Rows * Cols)) { + std::copy(M.Data.get(), M.Data.get() + (Rows * Cols), Data.get()); + } + + /// Move construct a PBQP matrix. + Matrix(Matrix &&M) + : Rows(M.Rows), Cols(M.Cols), Data(std::move(M.Data)) { + M.Rows = M.Cols = 0; + } + + /// Comparison operator. + bool operator==(const Matrix &M) const { + assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix"); + if (Rows != M.Rows || Cols != M.Cols) + return false; + return std::equal(Data.get(), Data.get() + (Rows * Cols), M.Data.get()); + } + + /// Return the number of rows in this matrix. + unsigned getRows() const { + assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix"); + return Rows; + } + + /// Return the number of cols in this matrix. + unsigned getCols() const { + assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix"); + return Cols; + } + + /// Matrix element access. + PBQPNum* operator[](unsigned R) { + assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix"); + assert(R < Rows && "Row out of bounds."); + return Data.get() + (R * Cols); + } + + /// Matrix element access. + const PBQPNum* operator[](unsigned R) const { + assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix"); + assert(R < Rows && "Row out of bounds."); + return Data.get() + (R * Cols); + } + + /// Returns the given row as a vector. + Vector getRowAsVector(unsigned R) const { + assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix"); + Vector V(Cols); + for (unsigned C = 0; C < Cols; ++C) + V[C] = (*this)[R][C]; + return V; + } + + /// Returns the given column as a vector. + Vector getColAsVector(unsigned C) const { + assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix"); + Vector V(Rows); + for (unsigned R = 0; R < Rows; ++R) + V[R] = (*this)[R][C]; + return V; + } + + /// Matrix transpose. + Matrix transpose() const { + assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix"); + Matrix M(Cols, Rows); + for (unsigned r = 0; r < Rows; ++r) + for (unsigned c = 0; c < Cols; ++c) + M[c][r] = (*this)[r][c]; + return M; + } + + /// Add the given matrix to this one. + Matrix& operator+=(const Matrix &M) { + assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix"); + assert(Rows == M.Rows && Cols == M.Cols && + "Matrix dimensions mismatch."); + std::transform(Data.get(), Data.get() + (Rows * Cols), M.Data.get(), + Data.get(), std::plus<PBQPNum>()); + return *this; + } + + Matrix operator+(const Matrix &M) { + assert(Rows != 0 && Cols != 0 && Data && "Invalid matrix"); + Matrix Tmp(*this); + Tmp += M; + return Tmp; + } + +private: + unsigned Rows, Cols; + std::unique_ptr<PBQPNum []> Data; +}; + +/// Return a hash_code for the given matrix. +inline hash_code hash_value(const Matrix &M) { + unsigned *MBegin = reinterpret_cast<unsigned*>(M.Data.get()); + unsigned *MEnd = + reinterpret_cast<unsigned*>(M.Data.get() + (M.Rows * M.Cols)); + return hash_combine(M.Rows, M.Cols, hash_combine_range(MBegin, MEnd)); +} + +/// Output a textual representation of the given matrix on the given +/// output stream. +template <typename OStream> +OStream& operator<<(OStream &OS, const Matrix &M) { + assert((M.getRows() != 0) && "Zero-row matrix badness."); + for (unsigned i = 0; i < M.getRows(); ++i) + OS << M.getRowAsVector(i) << "\n"; + return OS; +} + +template <typename Metadata> +class MDVector : public Vector { +public: + MDVector(const Vector &v) : Vector(v), md(*this) {} + MDVector(Vector &&v) : Vector(std::move(v)), md(*this) { } + + const Metadata& getMetadata() const { return md; } + +private: + Metadata md; +}; + +template <typename Metadata> +inline hash_code hash_value(const MDVector<Metadata> &V) { + return hash_value(static_cast<const Vector&>(V)); +} + +template <typename Metadata> +class MDMatrix : public Matrix { +public: + MDMatrix(const Matrix &m) : Matrix(m), md(*this) {} + MDMatrix(Matrix &&m) : Matrix(std::move(m)), md(*this) { } + + const Metadata& getMetadata() const { return md; } + +private: + Metadata md; +}; + +template <typename Metadata> +inline hash_code hash_value(const MDMatrix<Metadata> &M) { + return hash_value(static_cast<const Matrix&>(M)); +} + +} // end namespace PBQP +} // end namespace llvm + +#endif // LLVM_CODEGEN_PBQP_MATH_H diff --git a/clang-r353983/include/llvm/CodeGen/PBQP/ReductionRules.h b/clang-r353983/include/llvm/CodeGen/PBQP/ReductionRules.h new file mode 100644 index 00000000..51822d08 --- /dev/null +++ b/clang-r353983/include/llvm/CodeGen/PBQP/ReductionRules.h @@ -0,0 +1,222 @@ +//===- ReductionRules.h - Reduction Rules -----------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Reduction Rules. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H +#define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H + +#include "Graph.h" +#include "Math.h" +#include "Solution.h" +#include <cassert> +#include <limits> + +namespace llvm { +namespace PBQP { + + /// Reduce a node of degree one. + /// + /// Propagate costs from the given node, which must be of degree one, to its + /// neighbor. Notify the problem domain. + template <typename GraphT> + void applyR1(GraphT &G, typename GraphT::NodeId NId) { + using NodeId = typename GraphT::NodeId; + using EdgeId = typename GraphT::EdgeId; + using Vector = typename GraphT::Vector; + using Matrix = typename GraphT::Matrix; + using RawVector = typename GraphT::RawVector; + + assert(G.getNodeDegree(NId) == 1 && + "R1 applied to node with degree != 1."); + + EdgeId EId = *G.adjEdgeIds(NId).begin(); + NodeId MId = G.getEdgeOtherNodeId(EId, NId); + + const Matrix &ECosts = G.getEdgeCosts(EId); + const Vector &XCosts = G.getNodeCosts(NId); + RawVector YCosts = G.getNodeCosts(MId); + + // Duplicate a little to avoid transposing matrices. + if (NId == G.getEdgeNode1Id(EId)) { + for (unsigned j = 0; j < YCosts.getLength(); ++j) { + PBQPNum Min = ECosts[0][j] + XCosts[0]; + for (unsigned i = 1; i < XCosts.getLength(); ++i) { + PBQPNum C = ECosts[i][j] + XCosts[i]; + if (C < Min) + Min = C; + } + YCosts[j] += Min; + } + } else { + for (unsigned i = 0; i < YCosts.getLength(); ++i) { + PBQPNum Min = ECosts[i][0] + XCosts[0]; + for (unsigned j = 1; j < XCosts.getLength(); ++j) { + PBQPNum C = ECosts[i][j] + XCosts[j]; + if (C < Min) + Min = C; + } + YCosts[i] += Min; + } + } + G.setNodeCosts(MId, YCosts); + G.disconnectEdge(EId, MId); + } + + template <typename GraphT> + void applyR2(GraphT &G, typename GraphT::NodeId NId) { + using NodeId = typename GraphT::NodeId; + using EdgeId = typename GraphT::EdgeId; + using Vector = typename GraphT::Vector; + using Matrix = typename GraphT::Matrix; + using RawMatrix = typename GraphT::RawMatrix; + + assert(G.getNodeDegree(NId) == 2 && + "R2 applied to node with degree != 2."); + + const Vector &XCosts = G.getNodeCosts(NId); + + typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin(); + EdgeId YXEId = *AEItr, + ZXEId = *(++AEItr); + + NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId), + ZNId = G.getEdgeOtherNodeId(ZXEId, NId); + + bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId), + FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId); + + const Matrix *YXECosts = FlipEdge1 ? + new Matrix(G.getEdgeCosts(YXEId).transpose()) : + &G.getEdgeCosts(YXEId); + + const Matrix *ZXECosts = FlipEdge2 ? + new Matrix(G.getEdgeCosts(ZXEId).transpose()) : + &G.getEdgeCosts(ZXEId); + + unsigned XLen = XCosts.getLength(), + YLen = YXECosts->getRows(), + ZLen = ZXECosts->getRows(); + + RawMatrix Delta(YLen, ZLen); + + for (unsigned i = 0; i < YLen; ++i) { + for (unsigned j = 0; j < ZLen; ++j) { + PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0]; + for (unsigned k = 1; k < XLen; ++k) { + PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k]; + if (C < Min) { + Min = C; + } + } + Delta[i][j] = Min; + } + } + + if (FlipEdge1) + delete YXECosts; + + if (FlipEdge2) + delete ZXECosts; + + EdgeId YZEId = G.findEdge(YNId, ZNId); + + if (YZEId == G.invalidEdgeId()) { + YZEId = G.addEdge(YNId, ZNId, Delta); + } else { + const Matrix &YZECosts = G.getEdgeCosts(YZEId); + if (YNId == G.getEdgeNode1Id(YZEId)) { + G.updateEdgeCosts(YZEId, Delta + YZECosts); + } else { + G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts); + } + } + + G.disconnectEdge(YXEId, YNId); + G.disconnectEdge(ZXEId, ZNId); + + // TODO: Try to normalize newly added/modified edge. + } + +#ifndef NDEBUG + // Does this Cost vector have any register options ? + template <typename VectorT> + bool hasRegisterOptions(const VectorT &V) { + unsigned VL = V.getLength(); + + // An empty or spill only cost vector does not provide any register option. + if (VL <= 1) + return false; + + // If there are registers in the cost vector, but all of them have infinite + // costs, then ... there is no available register. + for (unsigned i = 1; i < VL; ++i) + if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity()) + return true; + + return false; + } +#endif + + // Find a solution to a fully reduced graph by backpropagation. + // + // Given a graph and a reduction order, pop each node from the reduction + // order and greedily compute a minimum solution based on the node costs, and + // the dependent costs due to previously solved nodes. + // + // Note - This does not return the graph to its original (pre-reduction) + // state: the existing solvers destructively alter the node and edge + // costs. Given that, the backpropagate function doesn't attempt to + // replace the edges either, but leaves the graph in its reduced + // state. + template <typename GraphT, typename StackT> + Solution backpropagate(GraphT& G, StackT stack) { + using NodeId = GraphBase::NodeId; + using Matrix = typename GraphT::Matrix; + using RawVector = typename GraphT::RawVector; + + Solution s; + + while (!stack.empty()) { + NodeId NId = stack.back(); + stack.pop_back(); + + RawVector v = G.getNodeCosts(NId); + +#ifndef NDEBUG + // Although a conservatively allocatable node can be allocated to a register, + // spilling it may provide a lower cost solution. Assert here that spilling + // is done by choice, not because there were no register available. + if (G.getNodeMetadata(NId).wasConservativelyAllocatable()) + assert(hasRegisterOptions(v) && "A conservatively allocatable node " + "must have available register options"); +#endif + + for (auto EId : G.adjEdgeIds(NId)) { + const Matrix& edgeCosts = G.getEdgeCosts(EId); + if (NId == G.getEdgeNode1Id(EId)) { + NodeId mId = G.getEdgeNode2Id(EId); + v += edgeCosts.getColAsVector(s.getSelection(mId)); + } else { + NodeId mId = G.getEdgeNode1Id(EId); + v += edgeCosts.getRowAsVector(s.getSelection(mId)); + } + } + + s.setSelection(NId, v.minIndex()); + } + + return s; + } + +} // end namespace PBQP +} // end namespace llvm + +#endif // LLVM_CODEGEN_PBQP_REDUCTIONRULES_H diff --git a/clang-r353983/include/llvm/CodeGen/PBQP/Solution.h b/clang-r353983/include/llvm/CodeGen/PBQP/Solution.h new file mode 100644 index 00000000..d5b1474f --- /dev/null +++ b/clang-r353983/include/llvm/CodeGen/PBQP/Solution.h @@ -0,0 +1,55 @@ +//===- Solution.h - PBQP Solution -------------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// PBQP Solution class. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_PBQP_SOLUTION_H +#define LLVM_CODEGEN_PBQP_SOLUTION_H + +#include "llvm/CodeGen/PBQP/Graph.h" +#include <cassert> +#include <map> + +namespace llvm { +namespace PBQP { + + /// Represents a solution to a PBQP problem. + /// + /// To get the selection for each node in the problem use the getSelection method. + class Solution { + private: + using SelectionsMap = std::map<GraphBase::NodeId, unsigned>; + SelectionsMap selections; + + public: + /// Initialise an empty solution. + Solution() = default; + + /// Set the selection for a given node. + /// @param nodeId Node id. + /// @param selection Selection for nodeId. + void setSelection(GraphBase::NodeId nodeId, unsigned selection) { + selections[nodeId] = selection; + } + + /// Get a node's selection. + /// @param nodeId Node id. + /// @return The selection for nodeId; + unsigned getSelection(GraphBase::NodeId nodeId) const { + SelectionsMap::const_iterator sItr = selections.find(nodeId); + assert(sItr != selections.end() && "No selection for node."); + return sItr->second; + } + }; + +} // end namespace PBQP +} // end namespace llvm + +#endif // LLVM_CODEGEN_PBQP_SOLUTION_H |
